Просадочные грунты

Просадка грунта – это процесс коренного изменения плотности грунта, в определенных местах или на общей площади, причиной которого является избыточное увлажнение вследствие обильных дождей или ошибках сделанных при расчете несущей способности фундамента.

Просадка и ее воздействие

К просадочным грунтам относят те, что имеют неустойчивую физико-механическую форму (наличие большой пористости). Такой грунт имеет высокую пористость, которая при воздействии на него давления или повешенной увлажненности, изменяет свою плотность. Высокую пористость имеет грунт лессы и лессовидные суглинки. Пористость такого грунта составляет до 50%, большая часть грунта имеет пылевидные частицы. Такой грунт в нормальных условиях имеет очень маленькую влажность, поэтому под воздействием дополнительной влаги значительно изменяет свою структуру. Также лессы насыщены карбонаты, которые легко растворимы в воде, что нарушает целость грунта.

При определении уровня просадки выделяют два основных типа:

  • просадка только от нагрузки объекта;
  • просадка и от нагрузки, и от собственного веса грунта.

Основная проблема – это не однородность грунта и поэтому проведение расчетов по просадочности необходимо проводить на всей площади как вдоль, так и в глубину. Только с определением показателей по каждому слою можно определить вид фундамента и рассчитать его размеры и глубину закладки.

За счет большого опыта изыскательных работ наша компания проводит все необходимые исследования и самостоятельно определяет необходимые условия строительства фундамента на просадочных грунтах.

В первую очередь определяется относительная просадочность – физико-механическое изменение грунта при увеличении влажности под воздействием нагрузки и собственного веса грунта.

А также расчеты эпюра давления и интерполяция, как основные показатели определяющие условия для возведения фундамента.

Опасность строительства на просадочном грунте заключается в первую очередь в безопасность эксплуатации здания. При просадке возникает изменение надежности опор (изменение уровня на одном или нескольких участках), что нарушает целостность фундамента из-за перелома линии фронта. Такое воздействие на фундамент влечет изменение во всех элементах здания, которые построены на фундаменте. Так стены здания из-за неровности опоры начинают разрушаться, появляются трещины. Возможен обвал одной из частей конструкции или здания в целом.

Просадочными называют пылевато-глинистые грунты, которые при замачивании дают просадку (дополни­тельную вертикальную деформацию) с величиной относительной де­формации esl 0,01. В отличие от обычной осадки, просадка приводит к коренному изменению структуры фунта.

Просадка свойственна, прежде всего, лессовым суглинкам и су­песям. Лишь в отдельных случаях она может возникать в пылеватых песках с высокой структурной прочностью, а также в некоторых тех­ногенных грунтах (отходы промышленного производства, насыпные грунты и др.).

Значение лессовых грунтов в строительной практике трудно переоценить. Занимая огромные площади (как правило, в районах наиболее обжитых и густонаселенных), они нередко служат причиной недопустимых деформаций зданий и сооружений. Во многих случаях это связано с недостаточным учетом их специфических особенностей и в первую очередь — просадочности.

Проектирование фундамента на просадочных грунтах

Для закладки фундамента требуется проведение целого ряда работ, которые включают:

  • проведение инженерно-геологических исследований для определения условий просадки и свойств грунтов;
  • прорабатываются все варианты устранения воздействия условий просадочности грунтов, возможность прорезки всей толщи неустойчивых пород грунта, необходимые работы по гидроизоляции;
  • определяется необходимые размер и глубина заложения фундамента;
  • рассчитывается возможная просадка фундамента;
  • при необходимости определяются параметры искусственной опоры;
  • осуществляется итоговый комплексный расчет фундамента;
  • утверждается тип и размеры фундамента.

При проведении инженерно-геологического исследования самым главным является определить просадочные особенности грунта, на котором будет производиться строительство.

При определении необходимых мер устранения избыточной просадки учитывают возможность прорезки всего слоя просадки. В таком случаи стоимость фундамента возрастает, однако возможна компенсация за счет сокращения затрат на искусственное основание и средства гидроизоляции.

Такая закладка фундамента не осложнена дополнительными проблемами с использованием особо сложных машин. Разработка котлованов осуществляется обычными землеройными машинами.

Лёссовые (нем. loss — рыхлый, несвязный) грунты имеют ши­рокое распространение в мире, особенно в Европе и Азии, занимая площадь около 13 млн км2. Почти сплошным покровом лессовые породы лежат на большей части территории юга европейской части России (Нижний Дон, Предкавказье, Заволжье и др.), а также на юге Западной Сибири и в ряде других степных районов.

Значительные площади заняты ими на юге Украины, в восточном Закавказье, в Молдове, Восточной Европе, в Китае, Средней Азии, Монголии и во многих других районах мира.

Среди лессовых отложений различают типичный лесс, преимущес­твенно эолового (ветрового) происхождения, и лессовидные суглинки (переотложенные первичные образования). Резкую границу между ними проводить затруднительно, поэтому в инженерно-геологических целях их обычно объединяют единым термином «лессовые породы» или «лессовые грунты».

Условия залегания лессовых пород достаточно однообразны. Неза­висимо от гипсометрического положения отдельных положительных форм рельефа, они покрывают плоские водоразделы, их склоны, поверхность высоких террас и т. д.

Мощность лессовых толщ изменяется от первых метров (в северной части зоны их распространения) до 20-30 м в южных районах нашей страны, реже до 80 м и более (юго-восточная часть Предкавказья, Западная Сибирь). В мире известны районы, где мощность лессовой толщи достигает 150-200 м и даже 400 м (лессовое плато в Централь­ном Китае).

По вопросу образования лессовых пород среди ученых-лессоведов существуют различные представления (эоловая гипотеза, криогенная, пролювиальная, аллювиальная и др.). В последнее время известность получила космическая гипотеза, связывающая образование лессовых пород с поступлением на Землю пыли (мелкозема) из космического пространства (Ш. Э. У су паев и др.).

Отличительные признаки лессовых грунтов следующие: 1) желто- бурая и палево-желтая окраска; 2) высокая пылеватость (содержание пылеватой фракции (0,05-0,005 мм) свыше 50% при небольшом ко­личестве глинистых частиц); 3) повышенная пористость (40-55%) с сетью макропор (размером 1-3 мм), видимых невооруженным глазом; 4) невысокая природная влажность (Sr = 0,4-0,5), поэтому лессовый грунт, помещенный в воду, быстро размокает; 5) способность держать вертикальный откос (до 10 м) (рис. 23.4); 6) высокая карбонатность; 7) однородная (неслоистая) текстура, прерываемая прослоями погре­бенной почвы.

По В.А. Обручеву, типичные лессы обладают полным комплексом лессовых черт, у лессовидных пород недостает одной или нескольких лессовых черт.

Лессовые породы отличаются резкой анизотропией фильтрацион­ных свойств, что связано с вертикальной (преимущественно) ориенти­ровкой макропор. С этой их особенностью связано медленное расте­кание в стороны куполов грунтовых вод, нередко формирующихся в лессовой толще на городских территориях, а также достаточно быст­рый подъем уровня грунтовых вод (до 1 м в год) при подтоплении.

Еще одна отличительная особенность лессовых пород — цикличность. Проявляется она в ритмичном чередовании типичных лессов с погребенными почвами и непросадочными лессовидными суглинками.

Минеральный состав лессовых грунтов характеризуется наличием водоустойчивых минералов (кварца, полевых шпатов и др.) — до 50-60%, глинистых (гидрослюды, а также каолинита, монтмориллонита и др.) — до 15-30% и водорастворимых минералов (хлориды, сульфаты, карбонаты и др.) — до 5-15%.

Просадочность лессовых пород обусловлена особенностями их формирования в условиях сухого климата при малой влажности, в результате чего создаются структурные связи, способствующие воз­никновению и сохранению в породе «недоуплотненного состояния» (по Н. Я. Денисову).

Механизм просадки может быть представлен следующим образом. Вода, проникая в маловлажную высокопористую пылеватую лессовую породу, разрушает водонеустойчивые структурные связи, при этом происходит ее доуплотнение, пористость уменьшается и приходит в соответствие с напряженным состоянием. Крупные агрегаты распа­даются, и формируется более плотная упаковка частиц.

Внешне этот процесс выражается в уменьшении объема лессовых пород и неравномерном оседании поверхности земли. На поверхности водоразделов, сложенных лессовыми породами, при увлажнении их атмосферными осадками часто формируются просадочные блюдца размерами до 50-100 м в поперечнике и глубиной от долей метра до 1-2 м.

Несравненно больше просадочные деформации лессовых пород выражены при техногенном замачивании (утечки воды из ороси­тельных каналов, водохранилищ, водонесущих коммуникаций, при интенсивном поливе парков и садов и т. д.)

Начальное просадочное давление (Psl) — это минимальное дав­ление, при котором начинают проявляться просадочные свойства лессовых грунтов. Чем оно ниже, тем грунт считается более проса- дочным.

Величину Psl определяют по тому давлению, при котором относи­тельная просадочность es1 = 0,01. Ее величина колеблется для различ­ных типов лессовых просадочных грунтов от 0,02 до 0,3 МПа.

Определение Psi позволяет установить величину деформируемой зоны, т. е. зоны, в пределах которой происходит просадка грунта от нагрузки фундаментов.

Начальная просадочная влажность (Ws|) — минимальная влаж­ность, при которой проявляются просадочные свойства лессовых грунтов. Ее определяют по результатам лабораторных испытаний как влажность, при которой esl = 0,01.

Согласно СНиП 2.02.01-83*, грунтовые условия строительных площадок, сложенных лессовыми просадочными грунтами, подраз­деляются на два типа:

  • тип — грунтовые условия, в которых просадка от собственного веса грунта отсутствует или не превышает 5 см; просадка возможна в основном от внешней нагрузки.
  • тип — грунтовые условия, в которых, помимо просадки грунтов от внешней нагрузки, возможна их просадка от собственного веса и величина ее превышает 5 см.

Тип грунтовых условий устанавливают, исходя из величины относительной просадочности грунтов (ssl), числа слоев и мощности каждого просадочного слоя.

Наиболее достоверно I или II тип грунтовых условий определяет­ся путем длительного замачивания опытных котлованов (в течение 1-3 месяцев) и наблюдений за просадкой грунтов с помощью поверх­ностных и глубинных марок.

Устранение просадки грунта

При определении просадки менее 5 см для устранения возможных нарушений устойчивости и разрушения фундамента используют следующие методы:

  • уплотнение с использованием трамбовки – является долговременным и требует использование специализированных машин;
  • создание подушки из не просадочных грунтов – возможность применять только в отдельных случаях, когда слой неплотной породы небольшой;
  • искусственно замачивание грунта, для его естественной просадки – является наиболее дешевым способом, но занимает большой временной период (после проведения увлажнения требуется ожидать ухода воды из верхнего слоя), на результат могут влиять погодные условия;
  • использование водозащитных мероприятий для устранения возможного увлажнения почвы.

При определении типа просадки от собственного веса более 5 см могут использовать один из методов или целый комплекс для предотвращения опасных условий:

  • уплотнение за счет грунтовых свай;
  • проход всего просадочного слоя с использованием свай;
  • уплотнение грунта замачиванием и подрывом грунтовых вод с последующей трамбовкой;
  • возведение фундамента из набивных свай с расширенной пятой;
  • проведение водозащитных мероприятий с уплотнением грунта.

Для закрепления слабого грунта используют такие методы, как: цементация, силикатизация, электросиликатизация.

Цементация представляет собой процесс заполнения проблемных участков жидким раствором с большим соотношением цемента для быстрого закрепления. Буровая машина закручивает перфорированные трубы до необходимой глубины и через них подается раствор. После подъема труб, скважина также заливается, выполняя функцию сваи.

Силикатизация – это процесс фиксация грунта, который содержит большой процент пылевых частиц, составами на основе жидкого стекла. Раствор нагнетается под давлением и закрепляет область в радиусе 0,3-1 м. Такой метод может использоваться как для закрепления отдельных участков, так и для фиксации всего массива. При фиксации всей площади раствор нагнетают в шахматном порядке для закрепления максимальной площади и сокращения расходов. Электросиликатизация отличается наличием постоянного тока в растворе для более быстрого и качественного закрепления грунта.

Наша компания работает во многих регионах страны и проводит все необходимые изыскания для постройки зданий на любых грунтах. Проводимые изыскания подходят для строительства зданий 1, 2, 3 уровней ответственности. Все работы проводятся согласно существующим требованиям к изыскательным работам.

Команда формируется только из опытных сотрудников и лучших выпускников ведущих вузов страны. Опыт работы на рынке инженерно-геологических изысканий гарантирует качество проводимых исследований.

Компания осуществляет индивидуальный подход к каждому клиенту и имеет гибкую ценовую политику. Для постоянных клиентов предусматривается специальная система установления скидок.

Для получения информации и ответов на существующие вопросы позвоните по указанному номеру или закажите обратный звонок. Также Вы всегда можете связаться с нами через электронную почту и получить все полезную информацию в кратчайшие сроки.

Ученые, занимающиеся изучением проблем лесса, разработали несколько концепций. Одна из них гласит, что в определении ключевых параметром лессовых отложений отсутствуют существенные различия. В число таких характеристик входят однородность гранулометрического состава в разрезе и по распространению на крупных территориях.

Как правило, это известковый микроагрегатированный алеврит не слоистого типа. В его состав входит 30-55% пылевых частиц, а пористость варьируется от 40% до 45%. Дополнительными свойствами служат небольшая концентрация легкорастворимых солей и устойчивость к удержанию вертикальной стенки в обнажениях. Алеврит считается просадочным при увлажнении, горизонтально залегающим, нередко с вкрапления погребенной почвы.

В плане генетической интерпретации признаков и свойств лессов складывается иная ситуация. По этому вопросу существуют противоположные точки зрения. Это подтверждает недостаточную изученность проблемы, а также отсутствие четких критериев генетического характера для интерпретации конкретных характеристик лессов.

Самым показательным моментом в этом отношении можно считать разницу в определении гранулометрического состава отложений.

Начало формирования лессовых покровов пришлось на холодные эпохи Нео плестотена. Появление отложений стало результатом осаждения атмосферной пыли.

После наступления максимального похолодания и оледенения циркуляция в атмосфере активизировалась. Это спровоцировало насыщение ее пылью, концентрация которой была в 30 раз больше, чем в межледниковом периоде. Даже холодные интервалы гренландского и антарктического кернов обогащались пылевыми частицами. В теплый периоды Нео плейстоцена процесс выпадения пыли замедлялся или вовсе прекращался. На поверхности происходило формирование почв. Так впервые появились лессово-почвенные последовательные напластования. Они рассматриваются как весьма значимые природные комплексы в плане полноты информации палеоклиматического характера.

Лессовые слои с лессово-почвенной последовательностью начали формироваться в рамках холодной стадии изотопно-кислородной градации. Погребенные почвы – в теплые стадии.

Выявить эоловое происхождение лесса позволяет сопоставление гранулометрического его состава и нынешний эоловых осадков на ледниках, снежниках, прочих поверхностях. Такое сравнение проводятся после пылевых бурь в различных районах.

Ключевая роль в составе накоплений принадлежит первичным частицам крупного алеврита. Диаметр составляет 0,05-0,001 мм, концентрация – 40-50%. Многие исследовательские работы доказывают, что перенос минерального дисперсного состава вызывает дифференциацию частиц по размерам и минералогическим параметрам.

Главное место в составе принадлежит полевым шпатам, кварцу и прочим легким минералам. Но здесь содержатся и тяжелые минералы.

В атмосферную пыль, перемещаемую на значительные расстояния, входят частицы, разные по минеральному составу и размерам. Это относится и к тяжелым минералам. Для них характерны поли дисперсность и поли минеральность, преобладают частицы 0,05-0,01 мм. Тяжелые минералы концентрируются в основном во фракциях с частицами таких размеров.

Кварц является самым устойчивым минералом. Он тяготеет к крупным гранулометрическим фракциям.

На Восточно-Европейской равнине лессовые образования становятся более мощными в направлении от севера к югу. Их строение при этом усложняется.На севере, на территории Больше земельской тундры, мощность первичных не пере отложенных суглинков составляет 1,5-1,8 м. Для них характерно отсутствие слоев погребенных почв и один ярус. К югу толщина возрастает до 5-8 и, а затем – до 10 и больше.

Одновременно появляется многоярусное строение толщи. Рост мощности приводит к усложнению строения, появлению множества погребенных почв. Именно поэтому выделена лессово-почвенная формация или последовательность.

Чередование лессовых горизонтов с погребенными почвами осложняется наличием горизонталей криогенных структур. Это называется псевдофимозом по жильному льду и изначально-грунтовыми клиньями. Некоторые ученые считают такие накопления лессово-почвенно-криогенной формацией (4.5.21). Она формировалась под влиянием палеографических факторов, действовавших во времена развития внеледниковой зоны на Восточно-Европейской равнине. Это проявилось чередованием на данной территории лессовых накоплений, появлении мерзлотных структур в холодные стадии палеографического развития и почвообразования – в теплые.

В результате лесс стали рассматривать в качестве феномена ледниковых холодных эпох, формировавшегося на фоне синхронного развития аккумуляции в основном воздушным путем. Речь идет о преимущественно алевритовой массе минерального типа, а также ее преобразованиях под комплексным воздействием синлитогенного аридного почвообразования наравне с морозным выветриванием.

Вместе с тем остается некоторая неопределенность в части определяющего фактора формирования алевритовой массы лесса из минеральных компонентов. В качестве ключевых факторов исследователи называют эоловую аккумуляцию и морозное выветривание. Остается актуальным вопрос об их соотношении в рамках стадиальной последовательности в литогенезе.

Многие ученые убеждены, что выдержанность лессово-почвенных формирований в пространственном плане на территории междуречий и их существенная мощность, достигающая десятков метро, явно свидетельствуют о ключевой роли золовой аккумуляции в накоплении однородных алевритовых лессовых горизонтов.

Но существуют данные, вызывающие сомнения в объективности описанной картины залегания почвенно-лесовых формирований. Изучение сведений по условиям залегания таких серий и крупные обобщения (9.19,20,21) позволяют сделать вывод о другой закономерности. Она заключается в том, что на волнорезных территориях Восточно-Европейской равнины и в южной части Западно-Сибирской низменности мощность лессовых формирований варьируется в пределах 1,5-2 и до 80 мм и даже больше. Мощные породы лесса относятся к понижениям до лессового рельефа.

На каждом этапе появления лессовых отложений важнейшими факторами служат процессы криогенного характера. Это относится к криогенному выветриванию, солифлю́кции, криогенному крипу, морозобойному растрескиванию . Под действием таких факторов появляются первичные жилы в грунте. Во времена потеплений они вытаивают и становятся псевдоморофозами. В рамках плейстоцена происходит чередование крио-хронов и соответствующих им стадий мерзлотного литогенеза, в которыми увязаны этапы почвообразования. В итоге формируются почвенно-лессовые серии.

В ряде научных трудов содержатся доказательства ведущей роли криогенных процессов в появлении лессовидных отложений в криолитозоне. Это относится и к  толще ледовых комплексов в Центральной и северной Якутии. Доказательства криогенной природы минерального компонента таких отложений заключаются в двух литологических критериях, указанных выше. Он дают возможность оценивать степень воздействия процессов криогенного характера на формирование лессовидных толщ в современной криолитозоне. Эти же критерии открывают возможности анализа минерального вещества в лессовых толщах.

Типичные лессы отличаются высокой карбонатностью. С этим связаны специфические параметры пород: просадочность при замачивании и способность к удерживанию вертикальной стенки. Определенные вопросы вызывают источники карбонатов. В литературе можно найти немало точек зрения по этому поводу, их проанализировал в своей работе Н.М Кригер. Максимально близкими к пониманию данной проблемы представляются ученые, рассматривающие в качестве источника карбонатов в лессах исходные материнские породы. Их минеральное вещество стало основой формирования лессового состава. Данное мнение подтверждается присутствием в лессах и первичных обломочных, и вторичных хемогенных карбонатов. Это вполне закономерно, судя по анализу обобщающих фундаментальных работ (19,20).

Процессы изменения первичных карбонатов в материнских породах заключаются в растворении и миграции гидрокарбонатных растворов. А.Г.Черняховский подробно описал эти процессы и осаждение вторичных карбонатов на современных этапах лессо образования на территории высокогорных степей внутреннего Тянь-Шаня. Аналогичные процессы происходили на стадии формирования лессов в пределах пери гляциальной зоны криохроны плейстоцена. Немаловажную роль играли и криогенные процессы.

Исходя из таблицы 1, в связи с неоднократным промерзанием и оттаиванием в увлажненном состоянии наблюдается почти полная дезинтеграция первоначальных зерен карбоната. Из частиц размерами 0,25-0,1 мм получаются тонкие пылеватые и глинистые частички в 0,0005-0,001 мм. Из-за этого процесса скорость растворения первичного карбоната в природных условиях заметно увеличивалась.

А. Г. Черняховский отмечает, что в районах современного лессового образования климат достаточно суровый. Зимой здесь фиксируются температуры до минус 38-40 градусов, летом – до плюс 30. В летнее время нередки заморозки по ночам. Тогда на озерах появляется лед толщиной около 1,5 см. Для заболоченных участков характерна вечная мерзлота. На остальной территории проявляется кратковременное и сезонное промерзание, которое запускает дезинтеграцию коренных пород. Это касается и разрушения в них зерна карбонатов до состояния порошка. Из-за этого карбонаты растворяются быстрее.

В лессах на Восточно-Европейской равнины и юга Западной Сибири концентрация карбонатов равна 15-20%. Колебания показателей происходят только в вертикальном профиле лессов в зависимости от погребенных почв. Они наблюдаются и в пространстве. Б.Б. Полынов говорил о геоморфологической локализации лесса как о карбонатной аккумулятивной коре выветривания, покрывающей склоны выше коры выветривания хлоридно-сульфатного типа и ниже зоны с сиалитным выветриванием. Такую закономерность ученый установил для горных массивов Кентея1 и Хангая2.

Обобщающий труд Н.И. Кригера содержит примеры зависимости концентрации СаСО3 от рельефа горных и равнинных территорий. Но данных пока недостаточно, необходимо дальнейшее исследование проблемы. Криогенные процессы вызывали дезинтеграцию карбонатов то тонко-дисперсных составов и способствовали их растворению. Они же обеспечили формирование определенных генераций аутогенных карбонатов, выпадающих из растворов при промерзании лессовидного осадка. Такая ситуация характерна для синкриогенных плейстоценовых пластов в северной Якутии.

Исследователи считают, что типичный карбонатный лес формировался в плейстоценовых преигляциальных зонах холодной степи. На гидротермический режим в значительной степени влияли мерзлотные процессы, чередование промерзания с оттаиванием. Становится возможным движение кальциевых растворов в почвенных и грунтовых водах, а также его выпадение в виде вторичных карбонатов. В голоцене сохранилась карбонатность лессов. Это связано с расположением северной границы лессов вблизи северной границы лесостепи и степи. Плейстоценовые погребенные почвы в сеимаридных зонах приближены к современным почвам в мсемиаридных зонах севернее данной границы. В перигляциальной зоне существуют более гумидные условия, поэтому здесь присутствуют слабо карбонатные или некарбонатные лессы с более интенсивными процессами выщелачивания.

Гидроморфные условия рельефных понижений способствовали аккумуляции в лессах вторичных карбонатов во времена холодных стадий формирования последовательности лессово-почвенных структур. При некотором потеплении и замедленном поступлении криогенного мелкозема почвы частично либо полностью выщелачивались. Одновременно уничтожался криогенный вид распределения кварца полевых шпатов в рамках гранулометрического спектра.

Существуют критерии литологического характера. Это коэффициенты криогенной контрастности и тяжелой фракции. Они дают возможность различить генетическую природу гранулометрической составляющей лессов. Соответственно, можно выяснить, являются ли они продуктами эоловой седиментации либо криогенного выветривания.

Изучение генетической природы лессов с использованием данного критерия на различных территориях, где сохраняются все признаки плейстоценовых зон, помогло выявить криогенную природу минеральных компонентов таких отложений.

Исследование параметров по данным критериям в отношении типичных карбонатных лессов не получило широкого распространения. Однако данные, приведенные в статье и касающиеся состава лессов в разных районах, подтверждают их криогенную природу. Необходимо продолжение исследований с учетом методических позиций, предлагаемых в статье. Это нужно для выявления ареалов криогенной, седиментогенной и эоловой природы минералов.

 

 

ООО «Геодата»